Generalized Classical Brst Cohomology and Reduction of Poisson Manifolds
نویسنده
چکیده
In this paper, we formulate a generalization of the classical BRST construction which applies to the case of the reduction of a poisson manifold by a submanifold. In the case of symplectic reduction, our procedure generalizes the usual classical BRST construction which only applies to symplectic reduction of a symplectic manifold by a coisotropic submanifold, i.e. the case of reducible “first class” constraints. In particular, our procedure yields a method to deal with “second-class” constraints. We construct the BRST complex and compute its cohomology. BRST cohomology vanishes for negative dimension and is isomorphic as a poisson algebra to the algebra of smooth functions on the reduced poisson manifold in zero dimension. We then show that in the general case of reduction of poisson manifolds, BRST cohomology cannot be identified with the cohomology of vertical differential forms. To Appear Communications in Mathematical Physics ♣ Internet: [email protected]. Address after September 1992: Department of Mathematics, University of Pennsylvania
منابع مشابه
Rieffel induction as generalized quantum Marsden-Weinstein reduction
A new approach to the quantization of constrained or otherwise reduced classical mechanical systems is proposed. On the classical side, the generalized symplectic reduction procedure of Mikami and Weinstein, as further extended by Xu in connection with symplectic equivalence bimodules and Morita equivalence of Poisson manifolds, is rewritten so as to avoid the use of symplectic groupoids, whose...
متن کاملRieeel Induction as Generalized Quantum Marsden-weinstein Reduction
A new approach to the quantization of constrained or otherwise reduced classical mechanical systems is proposed. On the classical side, the generalized symplectic reduction procedure of Mikami and Weinstein, as further extended by Xu in connection with symplectic equivalence bimodules and Morita equivalence of Poisson manifolds, is rewritten so as to avoid the use of symplectic groupoids, whose...
متن کاملGeometry of Maurer-Cartan Elements on Complex Manifolds
The semi-classical data attached to stacks of algebroids in the sense of Kashiwara and Kontsevich are Maurer-Cartan elements on complex manifolds, which we call extended Poisson structures as they generalize holomorphic Poisson structures. A canonical Lie algebroid is associated to each Maurer-Cartan element. We study the geometry underlying these Maurer-Cartan elements in the light of Lie alge...
متن کاملThe Donaldson-Witten function for gauge groups of rank larger than one
We study correlation functions in topologically twisted N = 2, d = 4 supersymmetric Yang-Mills theory for gauge groups of rank larger than one on compact four-manifolds X . We find that the topological invariance of the generator of correlation functions of BRST invariant observables is not spoiled by noncompactness of field space. We show how to express the correlators on simply connected mani...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کامل